博客
关于我
对embedding的理解
阅读量:553 次
发布时间:2019-03-09

本文共 288 字,大约阅读时间需要 1 分钟。

在深度学习领域,向量常被用来描述输入数据的特征。这种需求在自然语言处理(NLP)和计算机视觉(CV)中尤为突出。在NLP应用中,一个完整的句子会被分解为单个词,每一个单词都有一个对应的 embedding 向量,用来表示该单词在语义上的特性。在计算机视觉中,输入一张图片后,系统会对其中的不同区域或对象进行分割,每个区域都能得到一个 embedding 向量来表示其特征特征表示。嵌入向量的核心作用在于,将输入的高维数据(如词向量或图像向量)映射到一个相对低维但仍能捕捉实体信息的嵌入空间,使得复杂的特征关系能够以更简洁的方式表达和计算。这种方法在特征提取方面具有显著的优势。

转载地址:http://ljmsz.baihongyu.com/

你可能感兴趣的文章
node模块化
查看>>
node环境下使用import引入外部文件出错
查看>>
Node读取并输出txt文件内容
查看>>
node防xss攻击插件
查看>>
noi 7827 质数的和与积
查看>>
NOIp2005 过河
查看>>
NOIP2011T1 数字反转
查看>>
NOIP2014 提高组 Day2——寻找道路
查看>>
NOIp模拟赛二十九
查看>>
NOPI读取Excel
查看>>
NoSQL&MongoDB
查看>>
NoSQL介绍
查看>>
Notepad ++ 安装与配置教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Notepad++在线和离线安装JSON格式化插件
查看>>
notepad++最详情汇总
查看>>
notepad如何自动对齐_notepad++怎么自动排版
查看>>
Notification 使用详解(很全
查看>>
NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty()
查看>>
Now trying to drop the old temporary tablespace, the session hangs.
查看>>
nowcoder—Beauty of Trees
查看>>